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3 Lay Summary

Material development is a very slow process, relying primarily on trial and error. By refining
known theories of soft matter and its evolution, we can tailor materials to a given system using
a specifically developed model based on data rather than assumptions. By combining feature
selection methods with the efficiency of machine learning, we are able to determine the dominant
terms of a system’s partial differential equation (PDE).

In this project, we begin by simulating the process of dewetting. Height data is generated
from the Thin Film Equation, the simplest model describing the time evolution of a liquid
film on a surface. We then apply feature selection methods to reconstruct the PDE from the
data. However, there may be physics unaccounted for when using simple models, which is why
a process to learn the governing PDE from data is so valuable. The data-driven approach of
machine learning will allow us to make predictions from observation alone, and expedite the
process of materials discovery.



4 Aims and Objectives

We aim to develop a machine learning tool that can predict a system’s PDE from data alone,
using thin film dewetting as an example. The project can be broken up into the following
benchmark tasks:

e Understand the physics of dewetting in thin films according to the Thin Film Equation
e Reproduce results of the dewetting process published by Sharma [!]

e Extend the method to accept inverse-space inputs

e Test against numerically generated film height data to provide proof of principle

The final output of the project is a tool for learning the structure of known and unknown PDEs
from both real-space and power spectrum data.

5 Methodology

5.1 Scientific Methodology

The first part of the project focused on understanding the physics of dewetting. Liquids placed
on a repellent surface can undergo dewetting, the process of a fluid retracting itself and spontan-
eously rearranging into smaller structures such as droplets. The key force affecting the motion
of the film is the local surface tension. However, this doesn’t take into effect differences in
chemical interactions between the substrate and the film.

To account for this, we include a term for the effective potential between the solid and liquid
as an average of local intermolecular forces, called the disjoining pressure. In very thin films,
short range van der Waals interactions become increasingly dominant, which can lead to the
process of dewetting [2]. The disjoining pressure II(h) expresses the film’s tendency to change
thickness in order to minimize its free energy, while the surface tension ~y tries to keep the film
flat [5]. The Thin Film Equation also contains a viscous term p, which slows the growth of
instabilities.

- —;Mv (WY (yV2h = TI(h))) (1)

Data for the height of the film was calculated on a 2D grid according to the Thin Film Equation
using Python. This allowed us to visualize the formation of droplets as the system evolved with
time. The spatial and temporal derivatives were calculated using finite differences. Following
Schaeffer’s method [3], we applied an L' least squares minimization to the data.

5.2 Al Methodology

Follwing the methodology outlined in Schaeffer’s paper [3], we developed a feature selection
algorithm to determine the underlying PDE of a dataset. Using related physical models as a
guide, we first construct a candidate function of all possible derivative terms, similar to a Taylor
expansion. In this case we use the Navier-Stokes equations for motion of viscous fluids, which
are proportional to Vh with A as the local film height. The derivative function can be written
as a product of a coefficient vector =a and the remaining derivative terms. Each derivative
is expanded into a feature vector, a column holding the term’s value for each point on the
lattice at a given time. Once we have calculated all the feature vectors, we normalize them to



a maximum value of 1 to prevent unintentional biasing.

The feature selection algorithm utilized is known as the least absolute shrinkage and selection
operator (LASSO). LASSO yields sparse models, selecting only a subset of the initial para-
meters. It relies on a combination of a least-squares fit and the L' norm to penalize nonzero
coefficients. The penalizing L' norm shrinks less influential terms to zero, leaving us with the
dominant derivative terms.

A tuning parameter A allows us to choose how sparse we want the resulting vector to be. If
A=0, there would be no penalty and we would get a least squares fit, but if A\ was large enough,
all the coefficients would equal zero. For this reason, LASSO can produce a model with any
number of variables. Coefficient sparsity is the constraint for the system; we assume there are
relatively few governing terms. This allows for easier interpretation of the resulting PDE, which
is especially helpful in problems with a large number of variables.

6 Results

The 2D Thin Film Equation was used to generate height data on a 50 x 50 lattice. Constants
such as those for the viscosity and surface tension were taken from a past investigation by Nigel
Clarke [4]. Over the course of 800,000 timesteps, we visualized the initially uniform liquid film
begin to dewet.
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Figure 1: Time dependent evolution of the film height on a 50 x 50 lattice at (from left to
right): 7=0, 72 000, 216 000, and 288 000 seconds. A continuous colour scale shows the
difference between minimum and maximum thickness of the liquid film.

The morphological pattern of the dewetting in Figure 1 follows the same as the ones in
Sharma’s work [1]. It begins with the development of local ridges and valleys which eventually
form complete droplets given an extended simulation. Looking at the time stamps of the system
in Figure 1, it is clear the dewetting process for this film lies on a fairly large time scale. In
practice, the rate of evolution can be altered by changing the molecular weight or surrounding
temperature of the liquid [6].

Schaeffer’s regularized least-squares method was able to successfully identify the key features
of the dewetting dataset, which match those in Equation 1. The sparsity of the resultant
coefficients depended on the tuning parameter A, as shown in Table 1. Smaller values such as
A=1 gave a larger number of terms, making it difficult to determine the key features. A=50
was the perfect spot, giving the three most dominant features of the dataset. Increasing A from
here resulted in too sparse of a model with zeros for all of the derivative terms. Being able to
adjust the tuning parameter is very useful, allowing us to modify the feature selection process
as we see fit.



derivative terms coeflficients, A=1 coefficients, A=10 coeflicients, A=>50

Ah -23.67682341501 -19.95427479121 -3.40949155255
Ah? 2.36612471188 1.99370659228 0

Ah? -0.07881969781 -0.06640836085 -0.01124698840
Ahy 0 0 0

Ah, 0 0 0

Ahgy 0 0 0

Ahgy 0.00012990081 0 0

Ahy, 0.00041191849 0.00017939352 0

A%h 0 0 0

A2h, 0.00000651966 0 0

A?h, 0 0 0
A?hyy 0 0 0
A2hyy, -0.00992948769 -0.00990987686 -0.00978232115
A?h,, -0.00993628664 -0.00988517293 0

Table 1: Coefficients for candidate derivative terms generated using the LASSO shrinkage
method. The data from Figure 1 was applied to Schaeffer’s method for feature selection.
Different values of A correspond to how sparse the results are, which can be adjusted such as
here.

Schaeffer’s method successfully resolved the key features of the dewetting dataset, identifying
Ah, Ah3, and A%h,,. Although the nature of these terms isn’t intrinsically clear, simply finding
them allows us to learn more about a system’s underlying dynamics. This method would work
especially well as a foundation for further study, giving hints about properties and dynamics.

7 Conclusions & Future Work

In this project we have explored the process and physics behind dewetting in thin liquid films.
We have also developed and tested a machine learning model to determine the underlying PDE
of a dataset. We have demonstrated the use of a regularized least-squares minimization able to
correctly identify dominant terms in a system’s PDE. Although we have chosen to investigate
the Thin Film Equation in this project, the methodology outlined in this project can be applied
to any dynamic system in the same manner. This project has allowed us to explore some of the
many uses for Al outside of computer science, granting us a new tool to integrate into present
and future research.

Our group is continuing to work applying Schaeffer’s method to simulated data from the
Cahn-Hilliard Equation for phase separation in fluids, a process similar yet more complex than
dewetting. We aim to continue the investigation of statistical and machine learning methods
applied to soft matter as soon as the computing and lab resources become available.

Future improvements to the current work include increasing the time and length scales of the
simulations. With increased computing power, this would allow us to observe how the results
of our feature selection model vary with the size of the data. The next step in this ongoing



investigation is to apply the algorithm to experimental data, and see how the results compare
when the data is noisier. The long-term goal of this work is to apply the current methodology
to ongoing research in materials development and nanotechnology to aid and expedite new
discoveries.

8 Outputs, Data & Software Links

e A tested tool to learn the governing terms of a system’s PDE from a dataset
e Thin film dewetting data and an algorithm for creating more

e Presentation given at the AI3SD Skills4Scientists Posters & Careers Symposium, Septem-
ber 2021 (https://www.ai3sd.org/ai3sd-event /01-02-09-21-skills4scientists-poster-symposium/)

Programs and libraries used in this work:

Dewetting and LASSO data can be found in this repository
MATLAB

Matplotlib

NumPy

scikit-learn
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