Bayesian optimisation in Chemistry

Rubaiyat Khondaker¹, Stephen Gow², Mahesan Niranjan³, Jeremy Frey² ¹Department of Mathematics, University of Cambridge; ²Department of Chemistry, University of Southampton; ³Department of

Electronics and Computer Science, University of Southampton

rmk47@cam.ac.uk

Sponsored by:

optibrium

dotmatics knowledge solutions

Nanomole-scale high-throughput screening

Optimising Area Count (LC-MS). Initial domain had "holes" due to disallowed combinations, so coded 0 as default for these. Produced **poor** results (pale colours). Subsequently these combinations were excluded – average performance markedly improved.

Reference: Nanomole-scale high-throughput chemistry for the synthesis of complex molecules, Science, 2015, 347 (6217), 49-53

Conclusions

Bayesian optimisation is a promising technique with the potential to be used across a wide variety of problems. Only small modifications were required to transfer an algorithm built for reaction yield optimisation into a very different domain. Future work could explore noisy objective functions, 'generative' optimisation, time-dependent objective functions, or other problem domains.

