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1. Introduction
 Nanoparticles (NPs) have demonstrable utility as catalysts in many avenues of chemical 

production, due to their high energy surfaces and extremely high surface atom to volume ratios.
 Continuous-flow reactors provide a scalable way of manufacturing NP catalysts, with the 

potential for self-optimisation to increase yield, reduce time, environmental & materials cost, 
human requirement and the need for a priori chemical knowledge such as kinetics.

 Machine learning algorithms such as Bayesian Optimisation allow the determination of global 
response curve minima, while minimising the number of experiments required through 
artificially-intelligent decision-making.

 This project explores the benefits of optimising continuous over discrete variables in continuous 
flow synthesis and utilisation of these NP catalysts.

2. Self-Optimisation of Continuous-Flow Chemistry 
 Continuous-flow reactors allow the automation of experiments. When combined with 

algorithmic self-optimisation to generate experimental conditions, this permits the effective 
exploration of  large amounts of experimental space to find local and global optima.

 This is achieved using UV-vis on-line analysis of the generated products that creates a feedback-
loop, using an optimisation algorithm with an “acquisition function” to efficiently choose the 
next conditions to test in order to most quickly reach the “global optimum” within the modelled 
system.

 This has the potential to expedite discovery and enhance research undertaken in synthetic 
laboratories, termed “High-Throughput Experimentation” (HTE).

3. Bayesian Optimisation and System Modelling
 Optimsation is termed “Bayesian” because previous evidence or “priors” are updated with new 

evidence on every iteration to produce a new surrogate model.
 Bayesian optimisation treats a system as a “Gaussian process” where the distribution of possible 

results is dealt with as an infinite array of gaussian functions.
 It uses a mean and covariance function to represent the data in a simplified “surrogate model” 

created from training data about a complex real-life system (such as our continuous-flow reactor).
 Every iteration of the algorithm produces a new surrogate model with a distribution closer to that of 

the true objective function, with the variance representing uncertainty – i.e. greater further from 
the training data.

 This allows the modelling of a real life system from a set of experimentally generated training-data 
which can be used to produce modelled experiments with varied values for the input conditions.

4. Discrete vs. Continuous Variable Optimisation
 The ratio of Au:Ag in the alloyed nanoparticles (synthesised using the Turkevitch protocol) was varied 

and optimised as a continuous variable along with residence time, reduction concentration with the 
objective of obtaining maximum conversion in a test reduction reaction using a Bayesian optimisation 
algorithm. 

 This project will repeat these experiments but exploring the Au:Ag ratio of the NPs as a discrete 
variable with a variety of possible compositions to quantify the pros and cons of each approach.   
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