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3 Publicity Summary

Most technological devices depend in some way on crystalline inorganic materials, from the
perovskite oxides found in the capacitors underpinning phones and computers through to the
ceramic materials used to insulate ovens and hobs. Future technologies will require new mater-
ials with different properties, but discovering these is a significant challenge; trial and error is
simply too complex and time-consuming. An alternative approach is to harness our knowledge
of the crystalline structure of existing materials in order to predict the properties of new ones,
using machine learning (ML). Unfortunately, the conventional way in which we represent crystal
structures is unsuitable for current ML methods. This project aims to develop new ways to
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represent structures as an input for ML, and ultimately to predict physical properties (such as
how hard a material is) based on its atomic structure.

4 Executive Summary

The aim of this project is to develop two new ways of describing crystallographic extended
solids to enable their effective application in machine learning pipelines. The first is a real
(atomic) space descriptor based around atom-atom distances designed to capture short-range
interactions, whilst the second is based on a diffraction (reciprocal) space view which captures
more long-range, periodic information.

This report discusses the implementation of the real-space descriptor, and the finding that
it can predict bulk modulus from crystallographic structure better than comparable approaches
that do not include atomic species information. In addition, we describe the extension of this
project towards a new method of quantifying crystallographic similarity using the earth mover’s
distance (EMD) metric.

5 Aims and Objectives

Crystallographic data (both for inorganic and organic materials) present a wealth of information
that could be used for data-driven discovery, but their standard format of a periodic unit cell
and fractional atomic coordinates are unsuitable due to lack of invariance; there are infinitely
many unit cells to describe the structure, and permutation of atomic positions does not change
the resulting structure. Although significant work has been performed to address this challenge,
much of the focus has been on molecular materials due to their pharmaceutical importance. As
the molecules making up these materials are inherently finite, existing methods tend to work
best over short length scales or with few atomic species. In contrast, inorganic materials are
effectively infinite and present a huge atomic diversity, from simple 1-atom metals to 24-atom
minerals. Even for existing long-range methods, this poses a significant challenge, particularly
for ”small” data sets where deep learning cannot be applied.

The primary aim of this project was to develop new descriptors for extended crystal struc-
tures that could be applied across a wide range of materials chemistry problems, and are suitable
for relatively small-scale machine learning approaches. The two approaches investigated can be
categorised in terms of the crystal ’space’ in which they operate:

Real Space This is the position of atoms within a crystal, and the space between them. The
descriptor is based on the pair-wise distances between atoms, grouped by their proximity.

Reciprocal Space This is the Fourier transform of the atomic positions, as experimentally
observed through e.g. X-ray diffraction. As the Fourier transform of an infinitely periodic
arrangement of points is also infinitely periodic and point-like, this descriptor is focused on
using the magnitudes of these points (’intensities’) to capture long-range atomic ordering
information.

In addition to developing the new descriptors, another important objective of this project
was to test their applicability and generalisation. Whilst the initial proposal aimed to apply the
descriptors to the discovery of new oxyfluoride materials, more recent work has demonstrated
that there are additional complexities within this area beyond the nature of descriptors used
that renders it unsuitable for testing the effectiveness of new descriptors. As such, the project
aimed to test the new descriptors in the prediction of physical properties such as bulk modulus
from existing crystal structures. This problem has been explored previously, and gives us a
benchmark to compare results with.
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Following development of the real-space descriptor, it became apparent that standard dis-
tance measures (e.g. Euclidean distance) are not well-suited to comparing such distributions.
As such, an additional aim was introduced early in the project to try to determine the best sim-
ilarity measures for such descriptors, and investigate its application in existing ML approaches.

6 Methodology

6.1 Scientific Methodology

The first part of this project focused on developing an extended version of the commonly-used
radial distribution function (RDF) as a real space descriptor. This is the (binned) histogram
of pairwise atomic distances, up to a chosen distance cutoff. Our method takes this single
histogram, and sub-divides it into multiple histograms based on the relative proximity of atoms.
This introduces much more information than the standard-RDF, but the descriptor size is
independent of the crystal structure complexity. The approach is best illustrated through an
example, such as the binary solid SiO2 (quartz). This material has a cubic crystallographic
structure, but is relatively complex with 144 atoms per unit cell (Fig. 1a).∗ For each of these
144 atoms we determine their pairwise distances up to a cutoff (say 10 Å). Following this we
rank the distances for each atom in ascending order, and then combine the ith entry for all 144
atoms into a single binned distribution (the ith nearest neighbour histogram, or ’ith-NN’) . The
resulting ’extended-RDF’ (Fig. 1b) contains greater information than the standard-RDF due
to the separation of equal-distance neighbours into different NN-shells, but summation across
the complete range of histograms recovers the standard-RDF.

(a)

(b)

Figure 1: (a) Crystal structure of SiO2. Si - blue spheres; O - red spheres; (b) the resulting
extended-RDF.

The second (reciprocal space) descriptor calculates the X-ray diffraction intensity at points
in reciprocal space using the well-known structure factor equation from crystallography,

FS =
∑
n

fn,S exp (2πiS.rn)

∗Here we have ignored crystallographic symmetry
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or equivalently

Fhkl =
∑
n

fn,hkl exp (2πi(hxn + kyn + lzn)).

Here, F is the structure factor (F ∝
√

Intensity), S is the scattering vector (i.e. vector between
incoming and diffracted X-rays) and rn (or xn, yn, zn) is the fractional position of atom n
within the unit cell. h, k, l ∈ Z are so-called Miller indices, and express the position of a point
S in reciprocal space in terms of multiples of the three reciprocal lattice vectors defining the
periodicity within reciprocal space (equivalent to a unit cell).† fn is an atom-specific function
dependent on S (or h, k, l) which determines how well an atom diffracts X-rays at different
scattering angles. By computing F for different values of h, k, l this gives us a three-dimensional
descriptor for ML applications. To overcome the problem of unit-cell invariance, we have initially
focused on using the standard Niggli reduced cell for a given structure, which gives a convention
for choosing lattice vectors in real space. [1] We intend to extend this to a unit-cell invariant
method by utilising the relative positions of pairs of Fh,k,l in order to add rotational invariance.

6.2 AI Methodology

Following implementation of the crystal descriptors, we aimed to test their effectiveness at
predicting properties of materials based solely on crystal structure, and also investigate how
they quantify similarity between different crystal structures. From an AI perspective, the first of
these has made use of standard ML approaches such as kernel ridge regression (KRR) or LASSO
regression, due to their readily available implementations such as scikit-learn. Models have
been trained on a subset of 12,731 materials from the materials project database [2] for which
calculated bulk and shear moduli are available. Both linear and radial basis function kernels
have been tested, and model parameters optimised using a grid search with cross validation,
using mean absolute error (MAE) as the training metric. These tests have found that a linear
kernel with a regularisation strength of 1 gives the lowest MAE.

For comparison, models have also been trained using the standard RDF for comparison
with our extended RDF result, using the RadialDistributionFunction method of the MatMiner
package. [3]

For similarity calculations, we have explored the use of the Earth Mover Distance (EMD)
in order to compute a distance metric between two histogram distributions. The benefit of
this method over the linear product is that for two structures which are topologically identical
but with different lattice parameters (i.e. different average bond lengths) the EMD will give a
small distance which increases with lattice distortion, while the linear product will give a large
distance regardless of the degree of expansion/contraction.

7 Interim Results

7.1 Bulk Modulus Prediction

Using both bulk modulus (BM) and log10(BM) (logBM) as the ground truth, our results show
that logBM gives a better model for both training and test data (Fig. 2). This can be explained
due to the skewed BM distribution, with a relatively small number of large BM materials from
which to learn important parameters. Because of this skew, many previous reports predicting
BM have often removed such extreme values, but we have chosen not to to maintain generality.

Comparing the MAE obtained for the logBM data with the standard RDF descriptor, it
is readily apparent that the extended RDF vastly outperforms the existing descriptor for all
training set sizes tested (Fig. 3). For large training sets, this approaches the current state-of-the

†Equivalently, h, k, l can be considered as a set of parallel planes in real space.
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Figure 2: Predicted vs ground truth bulk modulus for training and test data for the full
dataset, trained using both BM and log(BM) as target value.

art in BM prediction of MAE (log(GPa)) ' 0.05. [4] It is worth highlighting that this state of
the art (based on crystal graph convolutional neural networks) is trained with a large number
of descriptors, including both atom-based and structure-based information. In contrast, the
extended RDF method does not include any details about atom types, yet still reproduces the
computed bulk modulus value with remarkable accuracy.

We have also trained a model using bulk modulus data present in the Materials Project
database as of 2017 for comparison with the work of [4] (yellow curve in Fig. 3)‡ which reveals
that older BM data give rise to slightly better predictions. This can be rationalised due to the
computational expense of computing BM using density functional theory (DFT), hence initial
attempts within the materials project focused on higher-symmetry crystal structures which are
potentially more numerous.

We have also tested a number of different ML regression models (KRR with linear and
gaussian kernels, LASSO, random forests, kNN regression) and have found that linear-kernel
KRR performs most effectively for this dataset. Further work is on-going to explore alternative
kernels that may be better suited to the problem.

7.2 Structural similarity

An underlying requirement of all of these regression models is the ability to compute similarity
between two input crystal structures, most commonly the L2-norm (or Euclidean distance). For
our extended RDF feature, this is not an accurate measure of similarity between two crystal
structures. Take, for example, the structure of a material measured at different temperatures.
Thermal expansion means that each pairwise distance will change with temperature, with the
result that they will no longer occupy the same histogram bins in the extended RDF. The
L2-norm will give a large distance between these two structures, comparable with that of a
completely different structure with no overlapping bins, whereas arguably the thermal expansion

‡the exact dataset used in [4] is unknown, but this is a best approximation
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Figure 3: Variation of MAE with training set size for extended RDF, standard RDF (”origin
RDF”) and a specified data subset.

should be a minor perturbation.
One solution to this problem is to employ the earth mover’s distance (EMD), which determ-

ines the minimum cost to equate two distributions. Such a method has recently been employed
to calculate similarity between chemical compositions. [5] We have applied this metric to a
number of crystallographically-related materials to compare it based on chemical understand-
ing. As an example, we have considered the Ruddlesden-Popper structural series Srn+1TinO3n+1

for n = 0, 1, 2,∞. This structure can be considered as an intergrowth of rocksalt (SrO, n = 0)
and perovskite (SrTiO3, n = ∞) layers with varying ratios. Comparing the EMD and cosine
similarity for this series (Fig. 4) it is clear that the EMD gives a measure of similarity consist-
ent with that expected chemically, whilst the cosine similarity clearly differentiates SrO from
SrTiO3, but barely discriminates n = ∞ from n = 1, 2. Additionally, EMD applied to the
standard RDF gives almost meaningless comparisons, with SrTiO3 appearing more similar to
SrO than Sr3Ti2O7, even though the latter contains a greater proportion of perovskite.

(a) (b) (c)

Figure 4: Pairwise similarity for the Ruddlesden-Popper series (n = 0, 1, 2,∞) using (a) EMD
on the extended RDF; (b) cosine similarity of the extended RDF and (c) EMD on the original

RDF.
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8 Outputs

The code generated during this project is stored in a private GitLab repository, but will be
made publicly available to coincide with publication of the results of the project. The initial
results have been presented at internal seminars within both the School of Informatics and
School of Chemistry at the University of Edinburgh. Additionally, we anticipate presenting the
results at the 25th Congress of International Union of Crystallography (IUCR) conference in
Prague, 14th-22nd August 2021.

9 Progress Summary

So far, the project has implemented a new real-space descriptor and explored its applicability in
predicting physical properties from crystal structure, for comparison with existing methods. In
addition, we have implemented the Earth Mover’s Distance (EMD) as an alternative distance
measure for comparing crystal structures. Both objectives have shown promising results, and
work is on-going to combine them.

We have also implemented an initial approach to the reciprocal space descriptor and are
performing preliminary analyses; further results will be published in our final project report.

10 Next Steps

Initially, we plan to continue implementing and testing the reciprocal space descriptor, and
then combining it with the extended RDF method to provide more accurate predictive models.
We also intend to incorporate the EMD results where possible. In the longer term, we plan to
document and make publicly available our newly developed code. We expect that the results
of this project will produce at least two publications in peer reviewed journals; preparation of
the first (on the extended-RDF method) is currently underway.
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